Genetic and pharmacologic identification of Akt as a mediator of brain-derived neurotrophic factor/TrkB rescue of neuroblastoma cells from chemotherapy-induced cell death.
نویسندگان
چکیده
Patients whose neuroblastoma tumors express high levels of brain-derived neurotrophic factor (BDNF) and TrkB have an unfavorable prognosis. Our previous studies indicated that BDNF activation of the TrkB signal transduction pathway blocked the cytotoxic effects of chemotherapeutic drugs via the phosphatidylinositol 3-kinase pathway. Akt is an important downstream target of phosphatidylinositol 3-kinase and functions to regulate cell survival, proliferation, and protein synthesis. In this study, we examined whether Akt is required and sufficient to mediate BDNF/TrkB protection of neuroblastoma cells from chemotherapy. Transient transfection of a constitutively active Akt (Akt-Myr) into TrkB-expressing SY5Y cells (TB8 cells) increases Akt activation and attenuates the cell death induced by chemotherapeutic reagents in the absence of BDNF. Furthermore, expression of a dominant-negative Akt (Akt-K179A) blocks the ability of BDNF to rescue TB8 cells from chemotherapy-induced cell death. Pharmacologic inhibition of Akt, with PIA6, a phosphatidylinositol ether lipid analogue (PIA), blocks BDNF-induced phosphorylation of Akt and the downstream target of Akt. PIA6 sensitizes neuroblastoma cells to chemotherapy and attenuates BDNF protection of neuroblastoma cells from chemotherapy-induced cell death. These results indicate that Akt is a key signaling component by which BDNF activation of the TrkB signal transduction pathway protects neuroblastoma cells from chemotherapy-induced cell death. This study raises the possibility that novel pharmacologic inhibitors of Akt may enhance the effectiveness of chemotherapeutic agents in the treatment of neuroblastoma tumors.
منابع مشابه
Inactivation of glycogen synthase kinase-3beta contributes to brain-derived neutrophic factor/TrkB-induced resistance to chemotherapy in neuroblastoma cells.
Elucidating signaling pathways that mediate cell survival or apoptosis will facilitate the development of targeted therapies in cancer. In neuroblastoma tumors, brain-derived neurotrophic factor (BDNF) and its receptor TrkB are associated with poor prognosis. Our previous studies have shown that BDNF activation of TrkB induces resistance to chemotherapy via activation of phosphoinositide-3-kina...
متن کاملCisplatin-induced cytotoxicity is blocked by brain-derived neurotrophic factor activation of TrkB signal transduction path in neuroblastoma.
We evaluated the ability of brain-derived neurotrophic factor (BDNF) to decrease the chemosensitivity of neuroblastoma cells to cisplatin. Two cell lines, one derived from SH-SY5Y (SY5Y-TB8) and the other from SK-N-AS (AS-TB8), transfected with a TrkB plasmid were generated, and used to assess the effects of activation of the TrkB signal transduction path on cisplatin (Cis) induced apoptosis. B...
متن کاملNeuroblastoma Cells from Chemotherapy-induced Apoptosis Brain-derived Neurotrophic Factor Activation of TrkB Protects
Neuroblastoma (NB) tumors expressing high levels of brain-derived neurotrophic factor (BDNF) and TrkB are associated with poor 5-year survival outcomes. Our previous studies indicated that BDNF blocked the cytotoxic effects of vinblastine on NB cells. Here we evaluated the ability of BDNF to decrease the chemosensitivity of NB cells to a number of common chemotherapeutic agents. Two SH-SY5Y NB ...
متن کاملBrain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3'-kinase pathway.
Neuroblastoma (NB) tumors expressing high levels of brain-derived neurotrophic factor (BDNF) and TrkB are associated with poor 5-year survival outcomes. Our previous studies indicated that BDNF blocked the cytotoxic effects of vinblastine on NB cells. Here we evaluated the ability of BDNF to decrease the chemosensitivity of NB cells to a number of common chemotherapeutic agents. Two SH-SY5Y NB ...
متن کاملEffect of Endurance Training on Brain Derived Neurotrophic Factor (BDNF) and Tyrosine Kinase B (Trkb) Level in Hippocampus of Ischemic Induced Male Rats
Introduction: Brain derived neurotrophic factor (BDNF) have neuroprotective effect through binding with tyrosine kinase B (TrkB). Thus the Aim of the present study was to investigate the effects of eight weeks endurance training on BDNF and TrkB levels in the hippocampus of ischemic induced male rats. Methods: 40 Male wistar rats (12 weeks old and 228.19±21.18g) were divided into four groups, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 6 شماره
صفحات -
تاریخ انتشار 2005